Mathematics at Elmgrove

How can I help my child with Maths?

Use maths with your child in daily life

Look at tables differently

Promote a positive attitude to maths

Ask your child to teach you maths

MyMaths

WRITTEN CALCULATIONS

- Aim to be able to become fluent when using efficient methods for all operations by the end of year 6.
- Each year group teach a specific method that allows for simple progression towards this goal.
- Methods used are designed to teach children about operations and calculations.

A point to consider

- Focusing on written strategies often comes at the expense of real mathematics.
- Following a set of rules does not involve a great deal of mathematical thinking.
- Proficiency in performing written calculations does not indicate skill in mathematics.

HOW WE TEACH IT

$+=$ signs and missing numbers

Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
$2=1+1$
$2+3=4+1$

Missing numbers need to be placed in all possible

$$
\begin{array}{ll}
3+4=\square & \square=3+4 \\
3+\square=7 & 7=\square+4
\end{array}
$$

Counting and Combining sets of Objects

 progress onto adding on to a set (augmentation)Missing number problems e.g $14+5=10+\square \quad 32+\square+\square=100$ Continue to use numberlines to develop understanding of:

$$
23+12=23+10+2
$$

\qquad
+10

$$
=33+2
$$

$$
=35
$$ places.

Combining two sets of objects (aggregation) which will
090
0
0
0

$$
0.0
$$

12 $35=1+\square+5$

It is valuable to use a range of representations (also see Y1). Counting on in tens and ones
$=35$
23
Partitioning and bridging through 10.
The steps in addition often bridge through a multiple of 10
e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5.
$8+7=15$

Adding 9 or 11 by adding 10 and adjusting by 1
e.g. Add 9 by adding 10 and adjusting by 1
$35+9=44$

Towards a Written Method

Partitioning in different ways and recombine
$47+25$

Leading to exchanging:
72

Expanded written method
$40+7+20+5=$
$40+20+7+5=$

$$
\begin{array}{r}
40+7 \\
+\frac{20+5}{60+12}=72
\end{array}
$$

$60+12=72$

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.

Partition into tens and ones

Partition both numbers and recombine.
Count on by partitioning the second number only e.g.
$247+125=247+100+20+5$

$$
\begin{aligned}
& =347+20+5 \\
& =367+5 \\
& =372
\end{aligned}
$$

Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10.

Towards a Written Method

Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)

$$
\begin{aligned}
& 200+40+7 \\
& \frac{100+20+5}{300+60+12}=372
\end{aligned}
$$

$$
247
$$

$$
+\frac{125}{12}
$$

$$
\frac{300}{372}
$$

Leading to children understanding the exchange between tens and ones.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

$$
247
$$

$$
\frac{+125}{\frac{372}{10}}
$$

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.
Written methods (progressing to 4-digits)
Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers.

$200+40+7$
$100+20+5$
$300+60+12=372$
247
$+125$
60
300
372
Compact written method
Extend to numbers with at least four digits.

2634
$+4517$
7151

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits)
72.8
$+54.6$
127.4

11

Missing number/digit problems:
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$

Written methods (progressing to more than 4-digits)

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.
172.83
$\begin{array}{r}+\quad 54.68 \\ \hline 227.51 \\ \hline 1\end{array}$
111
Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Missing number/digit problems:
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5 , progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

HOW WE EXTEND IT

Aims of new national curriculum involve fluency, mathematical reasoning and problem solving.

- Teaching methods to others.
- Missing number problems.
- Error checking.
- Investigations.

Over to our experts

Final thoughts

- Mathematical vocabulary is important.
- Practising written methods of calculations does not necessarily help with mathematical understanding.
- We want our pupils to be mathematicians not calculators.
- Use resources on mymaths.co.uk and nrich.maths.org to help engage children in mathematics
- Thank you

